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The Kraichnan-Phillips theorem asserts that, for incompressible, homogeneous, 
turbulent flow over a plane, rigid wall, the wall-pressure wavenumber-frequency 
spectrum P(k ,  w )  + 0 as the planar wavenumber k + 0 provided the frequency w + 0. 
A proof of this theorem is given by use of a general formula that expresses the 
normal force on an arbitrary rigid body in terms of volume and surface integrals 
involving the vorticity. Implications for the theory of flow-induced surface vibrations 
are briefly discussed. 

1. Introduction 
Structural vibrations are produced by turbulent-boundary-layer wall pressures 

(cf. Chandiramani 1977, 1983; Sevik 1983). For a plane fluid-solid interface and 
homogeneous substructure, the excitation of vibrations is dominated by the low- 
wavenumber (subwnvective) region of the wall-pressure wavenumber-frequency 
spectrum P(k ,w) ,  where the wavenumber k is conjugate to spatial position in the 
plane of the wall, and w denotes frequency (Chase 1980, 1987). In  flow at small Mach 
number the peak wall pressures occur in the convective domain centred on a 
streamwise wavenumber of order w / U c ,  where U, is a convection velocity equal to 
about 70 % of the velocity of the main stream. A low-wavenumber component of wall 
pressure is typically 30-50 dB smaller, but can effect a considerable transfer of mean 
flow energy to the vibrating structure when its wavelength matches that of a 
resonant wall mode. 

The wall-pressure spectrum has been subject to intense experimental and 
theoretical scrutiny in recent years (see Blake 1986; Chase 1980, 1987; Ffowcs 
Williams 1982 ; and references cited therein). Convective pressures correlate well with 
frequency w ,  friction velocity v* and boundary-layer thickness 8, but the precise 
levels in the low-wavenumber region (k8 5 O(1)) are elusive, and measurements vary 
widely from one experiment to another. Theoretical work by Phillips (1956) and 
Kraichnan (1956) suggest that P(k,  w )  + O  as k +O for incompressible flow over a 
rigid wall, a result frequently referred to as the Kraichnan-Phillips theorem. Chase 
(1991) has argued that the theorem is strictly valid only in an inviscid approximation, 
and that P(0,w)  can be non-zero when proper account is taken of the no-slip 
condition at the wall. That conclusion is important because it appears to accord with 
experimental studies which indicate that P(k,  w )  is wavenumber-white at sub- 
convective wavenumbers (Leehey 1988), and also because (as Chase 1991 demon- 
strates) it implies that the associated wall shear stress spectrum (7 t j (k ,~ ) ,  say) 
behaves in a similar manner as k +. 0. Non-zero values of 7 , (k ,  w )  for small k could 
explain the excitation of long-wavelength, longitudinal waves in elastomer coated 
cylinders, observed in tests involving turbulent flow parallel to the cylinder axis. 

However, the purpose of the present note is to supply alternative theoretical 
support for the Kraichnan-Phillips theorem, whose validity (it will be claimed) is 
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maintained even under the circumstances contemplated by Chase. This conclusion 
does not invalidate Chase’s (1991) formal analysis (which relates P ( k ,  w )  and 7tj (k ,  w )  
at  low wavenumbers), but does conflict with his assertion that the spectra remain 
non-zero and wavenumber-white as k + 0.  

The analysis is given in 52. A general formula given by Howe (1989) is used to 
determine the force exerted on a large, plane rigid plate by a compact region of 
vorticity in incompressible flow. This is generalized to turbulent boundary-layer 
flow, and it is deduced that P(0,  w )  + 0 (w + 0) as the dimensions of the wall become 
infinite. 

2. Analysis 
2.1. Normal force exerted on a large plate by a compact region of vorticity 

A compact distribution of vorticity in incompressible fluid of uniform density p and 
shear viscosity y is adjacent to  a rigid plate of infinite span and chord 2a in the 
absence of a mean flow (see figure 1 a) .  The region where the vorticity is significantly 
different from zero has characteristic dimension I ,  and will be designated the ‘eddy’. 
It is assumed that Reynolds number u l / v  >> 1,  where u ,  v ( = p / p )  respectively denote 
the characteristic velocity within the eddy and the kinematic viscosity. Viscous 
forces are therefore important only a t  exterior points of the eddy in the boundary 
layers induced on the plate. 

Introduce a coordinate system x = (xl, x,, x3) such that the plate occupies the 
region lxll c a, x, = 0, - m c x3 c co, and assume the eddy to be located above the 
plate (x2 > 0) in the vicinity of the origin 0. Let BJx, t )  denote the vorticity within 
the eddy. The total vorticity B is the sum of 0, and that generated a t  the surfaces 
of the plate. 

In incompressible flow at velocity u,  the normal force F (in the -2,-direction) on 
the plate can be expressed in the form (Howe 1989) 

F = - p  V X . Q A V ~ ~ X - ~  VXAB*dS. (2.1) I fS 
The volume integral is taken over the fluid and the surface integral is over the 
surfaces of the plate, the surface element dS being directed into the fluid. X(x) is an 
harmonic function equal to  the velocity potential of irrotational flow past the plate 
that has zero circulation about the plate, and unit speed in the x,-direction a t  large 
distances from the plate, i.e. 

X = Re{-i(z2-az)i}, z = xl+ix,. (2.2) 

Equation (2.1) will be used to determine the behaviour of F when the chord of the 
plate is very much larger than the eddy scale Z(a/Z 9 1) .  

When r = 1x1 < a, 
VX z Z / a ,  Z = ( -xl, x,, 0). (2.3) 

Thus, the asymptotic behaviour of F is given by 

a 
(2.4) 

P F = - -  Z-51Avd3x-- Z A a - d S ,  ?+m, 
p !  a a fs 

provided the integrands in (2.4) decay sufficiently fast with distance r from the eddy. 
To establish the validity of this formula we proceed to examine the behaviour of the 
integrands a t  positions on, and in the neighbourhood of, the plate for 16 r < a. 
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FIQIJRE 1.  ( a )  Compact region of vorticity of lengthscale 1 adjacent to a rigid plate in a viscous, 
incompressible fluid. ( b )  Turbulent flow over the plate. The wavenumber-frequency spectrum is 
defined on the square region A of side 2L + a. 

When the plate is absent, the pressure p ( x ,  t )  can be calculated from the solution 
of the equation 

which is obtained by taking the divergence of the momentum equation. Since v 
decays at least as fast as l / r 3  as r / l  --t XI, and 

v2b/p++2} =-v.(n,A U), (2.5) 

(a, A u )  ( y ,  t )  d3y = 0 I:m 
15-2 
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for a closed system of vorticity (Batchelor 1967), we find; 

p - p ~ ~ ( l / r ) ~ ,  r 9 1. (2.6) 
The same order of magnitude estimate is applicable in the presence of the plate 

(because any surface-generated vorticity a t  large distances from the eddy is produced 
by the action of the pressure field), and may be used to determine the magnitude of 
the surface and boundary-layer vorticities when 14 r -4 a. For fluctuations of 
frequency w ,  the linearized momentum equation and (2.6) imply that the inviscid, 
irrotational velocity u, accompanying the pressure fluctuations (2.6) satisfies, 

Y2 
ve - - ( l / r ) 4 ,  

W l  
1 4 r 4 a. 

The lengthscale of variation of v, is equal to  r when 1 < r Q a. Thus, when account 
is taken of viscosity and the no-slip condition a t  the surface of the plate, the velocity 
distribution u, say, within the unsteady boundary layer may be determined from the 
linearized boundary-layer equation (in the absence of mean flow) 

where u-+ u, outside the boundary layer. We easily calculate from this (Lighthill 
1978, Chap. 2) that  the surface distribution of vorticity is given in order of magnitude 
by 

, x,=O, 1 4 r 4 a .  

It follows from (2.7), (2.9) that  the components of frequency w of the integrands 
on the right of (2.4) are a t  most of order l/r6 and l / r 3  respectively when 1 4 r 4 a. 
These estimates confirm the absolute convergence of both integrals, and that the 
order of magnitude of the force can be cast in the form 

(2.10) 

where f is a dimensionless function of w that does not depend on a. This shows that 
the interaction of the eddy with the plate produces a non-vanishing normal force 
only by virtue of edge effects, i.e. as a consequence of the edges of the plate being 
within the hydrodynamic near field of the eddy. 

Let us consider how the argument must be modified by the presence of a laminar 
or turbulent mean flow over the plate in the positive x,-direction. We are concerned 
solely with that component F of the normal force that can be attributed to the eddy 
(i.e. the component that is coherent with the eddy vorticity). Additional inertia 
terms of the form v.Vv must now be included in the boundary-layer equation (2.8). 
Their principal effect is to modify the structure of the boundary layer associated with 
the component u of the net velocity u which is equal asymptotically to u, outside the 
boundary layer. However, the new terms can have no influence on the order of 
magnitude of u, which is still determined by the ‘incident’ pressure gradient 
(produced by the eddy) that drives the unsteady velocity u,. This implies the 
continued convergence of the surface integral in (2.4) when 52 is identified with the 
component of surface vorticity coherent with the eddy. 

For the volume integral of (2.4), the coherent part of the integrand in the range 
14 r 4 a includes terms linear in the mean boundary-layer vorticity and velocity. 
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Elementary calculation reveals that the contribution to the volume integral from the 
boundary layers, per unit surface area of the plate, is of order Uv,S,, where U is the 
mean flow velocity and 6, is the displacement thickness of the mean boundary layer. 
Convergence of the integral is ensured by noting that S, certainly grows no faster 
than x1 (Hinze 1975), and v, decreases as l/r4 when r 9 1. 

We conclude that the estimate (2.10) for the normal force produced by the eddy 
remains valid in the presence of a mean boundary-layer flow. 

2.2. The Kraichnan-Phillips theorem 

Consider next turbulent boundary-layer flow over the upper surface of the plate, 
whose chord 2a is taken to be very large. We examine the wall-pressure fluctuations 
in the square region A ,  lzll < L, Ix3( < L of side 2L, where L < a (see figure l b ) .  The 
turbulence in A is assumed to be homogeneous in planes parallel to the wall, with 
correlation scale 1 x 6 < L, where the variation of the boundary-layer thickness S 
within A is small. These conditions are implicitly assumed in the usual definition of 
the wall-pressure spectrum P(k,  w ) .  

Let p(x,, x3, t) denote the wall pressure in A ,  and define Fourier coefficients a,,(@) 

by 

(2.11) 

For time-stationary turbulence that is homogeneous in planes parallel to the plate, 
the wall-pressure spectrum is given by 

P(k,,k,,w) = lim R(x,,x,,t)exp{ -i(k,xl+k,x3-wt)}dx,dx,dt, 

(2.12) 

where R(x,, z3, t)  = (p (x ; ,  x4,7) p(xl +xi, z3 +xi, t + 7 ) )  is the wall-pressure correlation 
function, and angle brackets denote an ensemble average. It follows from this and 
(2.11) that 

<a,,(w)a&,,(d)) 6 M m S N n S ( ~ - w ’ ) ,  L % 8, (2.13) 

where the asterisk indicates complex conjugate. 
According to (2.11), 

ao,(o) = 4s” r r p(z,, z3, t)  eiWt dz, dz, dt. (2.14) 

If 6 4 L 4 a, the order of magnitude of this integral can be estimated from (2.10) to 
be 

(27~) -m -L -L 

(2.15) 

where the summation is over the assembly of statistically independent boundary- 
layer eddies in A (or within a region enclosing A whose linear dimension! are larger 
by a finite multiple of the turbulence correlation length 1 -a), and f , ( w )  is the 
Fourier time transform of a stationary random function of time, and corresponds to 
the factor f in (2.10) for the nth eddy. 
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Since the flow in A is homogeneous, there exists a common frequency spectrum 
@ ( w )  such that 

(fn(w)fAn*(w’)) = @ ( w )  6 ( w - w ’ ) .  (2 .16)  

When L % I there are appoxiqately (2L/Z)2 statistically independent eddies in A .  It 
follows that (xm x , f , ( w ) f , * ( w ’ ) )  x (2L/Z)2@(w) ~ ( w - u ’ ) ,  and therefore that 
(2.13)-( 2.15) imply 

(2 .17)  

The Kraichnan-Phillips theorem follows on taking the limit all  +. 00. 

This result says nothing about the behaviour of P ( k ,  w )  for k =k 0. In  a formal 
expansion P ( k ,  w )  = P(0, w )  + kj3P(0, w ) / 3 k j  + . . . , the coefficient of each term in the 
series is influenced by the finite size of the plate, and presumably tends to a unique 
limit (consistent with the local properties of the turbulent boundary layer) as &/a+ 
0. I n  that limit the variation of P(k ,w)  for small but finite k must scale on the 
boundary-layer thickness 8, and the first non-trivial term in the expansion is usually 
assumed to be 0 ( k 2 d 2 )  (cf. Chase 1987). 

The research reported in this paper was conducted for the United States Navy, 
Office of Naval Research, under Contract No. 88-C-0277 monitored by Dr P. B. 
Abraham and initiated by Dr A. J. Tucker. 
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